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MORE ON CUMULATIVE SEARCH EVASION GAMES

1. INTRODUCTION

Eagle and Washburn (1990) introduced Cumulative Search Evasion

Games (CSEGs) as two-person zero sum games where the cumulative payoffST
over T dime periods is t.,A(xt,yt,t), xt and yt being the locations of searcher

and evader, respectively, at time t. A path for the searcher is a sequence

X1 ...., xT where x1 E S0 and xt~i E S(xt,t) for t 2! 1, thesets So and S(.,,) being

given, and s&milarly for the evader except yi E E0 ana yt E E(yt, t). All of these

sets are nonempty subsets of Cs a given finite set of "cells." A mixed strategy

for the searcher is a probability distribution over paths. Let p(x,t) be the

corresponding marginal distribution, the probability that the searcher

occupies cell x at time t, and let q(y,t) be defined similarly for the evader.
T

Then the expected payoff is It ,,,y A(x,y,t)p(rt)q(y,t). This observation,

together with the observation that the optimization problem for one player

when the marginal distribution of the other is given is a shortest or longest-

path problem, formed the basis of two solution methods for solving CSEGs:

Fictitious Play and Linear Programming (LP). Only the LP method will be

discussed here. v.

One might hope to formulate an LP for the searcher in which the only

variables needed to describe the searcher's mixed strategy are p(x,t), since

those suffice to express the expected payoff. However, Eagle and Washburn U

* found it necessary to introduce the joint probabilities
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u(ij, t) = probability that the searcher occupies cell i at time
t-1, and cell j at time t,

together with network constraints to the effect that probabilities "flowing"

into and out of a cell must balance. The necessity t:) include these joint

probabilities is disappointing, since .n large problems there are many more

u-variables than p-variables. One of the goals of this paper is to show that the

u-variables can be avoided in certain one-dimensional CSEGs. This is the

subject of the n'ext section. Using only the p-variables makes it possible to

solve larger CSEGs than would otherwise be possible.

The other goal of this paper is to show that the payoff at time t in a CSEG,

can be generalized to A(xt. 1, xt, Yt-1, yt, t) if the u-variables are retained. The

required theorems and LP formulation, together with an example illustrating

the value of the generalization, is the subject of Section 3.

2. THE ONEýDIMENSIONAL CSEG

In thi6 section the positions of both parties must at all times be in the set of

cells C = N1 .... N), N > 1, with transitions from i to j'at t being permissible if i c
C, j EC, and l i-jil 1. These rules define E(*,,) and S(e,,). The payoff

function A(i,, t) is unrestricted.

Suppose for the moment that the searcher's marginal probabilities p(i, t)

were known to the evader, in which case any evader path that visits cell j at

time t must pay a penalty ("penalty" because the evader is the minimizer) of

Sp(i,t)A(i,j,t). Let g(j, t) be the minimum possible cumulative payoff from
iEC
time t onwards, given that the evader occupies cell j at time t. Then, taking

g(e, T + 1) * 0 for convenience, g(e, e) must satisfy the recursion

2



g(j0t) - p(i,t)A(i,j,r) + min g(k,t+1);j EC,1 & t • T (1)
iEC kEE(jt)

Since the evader must be in EO at time 1, the minimum possible payoff is
ming(j,1), which the pursuer wants tc maximize. This leads to the following

jEEo

Linear Program:

maximize go

subject to go -g(y,1) < 0; j E,

g(j,t) - £ p(i,t)A(i,j,t) . g(k,t + 1) <O;j E C,1 5 t 5 T,k E E(j, t),
iEC

and some feasibility constraints on p(e, 9).

Eagle and Washburn employed the u- variables in expressing the

feasibility constraints on p(s, * ). The object here is to firnd a way of

expressing those constraints without defining any new variables. First we

prove

Theorem 1. In the one-dimensional CSEG, p(*, ')is feasible if the following

feasibility'constraints hold:

P0 pi1). 1
iSO

k k+1
(left) p(i,t +1) - p(i,t) 0 0 ;l:5.k < kN;1.5 t < T

i=I i=I

N N(right) E.p(i~t+1) - Ep(i, t)':. 0 •l1:5k CN;1I• t <T

i-k +I i-k
N

* p(i,t} -1 ;1 <t-<T
i=I

p3,t) Z 0 i : N;1:5 t : T

3



Proof: Assume that the feasibility constraints hold, and consider the

proposition PT that there exists a feasible stochastic searcher motion process

for which the marginal distributions are p(*,t); 1 : t < T. P1 is clearly true,

since the feasibility constraints in that case require only that the searcher begin

in So. If it can be shown that PT implies PT+1, the theorem will be established

by induction. Toward this end, let cells 1, ... , N at time T be "sources" with

probability pi w p(i, T) each, and let the same ceils at time T + 1 be "sinks" with

probability qi a p(i; T + 1) each. To establish PT+i, it is sufficient to show that

there exist N 2 joint occupancy probabilities uij such that
N N

L- 1 uij m =pi, .j uij -q 1 " and uij= 0 unless j E E(i, t), the latter constraint

reflecting the requirement that transitions beyond neighboring cells are not

allowed. In other words, it must be possible to "ship" a unit of probability

from sources to sinks, with uij being the amount shipped from source i to sink

j. The "left biased"' method (LB) below is one constructive method for

accomplishing this. LB proceeds through the sources in increasing order,

shipping probability to the lowest numbered sink that is not yet satisfied until

the source being considered is exhausted, then proceeding to the next source

until all N sources have been considered. If LB makes uij > 0 for some i and

some j <i -- 1 (alternatively j > i + 1), we say that a left (alternatively right)

difficulty occurs at node i. To complete the proof it is required to show that

no difficulties of either type can occur as long as the feasibility constraints

hold.

Suppose that no difficulties occur in cells 1, ... , k - 1, but that a left

difficulty occurs in cell k (necessarily k Z 3, since left difficulties are not

possible in cells I and 2). Since all of the probability in sources 1, ... , k-1 can

,4
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be shipped to sinks 1, ... , k - 2 without satisfying one of those sinks (otherwise

the left difficulty could not occur in cell k), necessarily

k-2 k-Ij -, Epi > 0.
9 =1 i-1

But this inequality is in the opposite sense of one of the left constraints, so a

left difficulty cannot occur in cell k. Suppos.: instead that there is a right

difficulty. A right difficulty occurs for the first time in cell k only if there is

more probability in sources 1, ..., k than is required to satisfy sinks 1, ... , k + 1,

so

k+1 k

-qi < Ypi-

Since (pi) and (qi) are both constrained to be probability distributions, it

follows that

N N

, q,"- p,>o.
i-k÷2 i-k+1

But this contradicts one of the right constraints, so right difficulties cannot

occur either.

Since neither right nor left difficulties can occur, LB will discover a

feasible set of joint probabilities uij. This completes the proof. M

Obviously there is a symmetrically defined "right-biased method" that

will discover a possibly different Set of feasible joint probabilities. in'fact

there are many such methods and many feasible sets of joint probabilities.

Formulating the searcher's linear program without reference to these joint

5,



probabilities has the advantage of eliminating many alternate optima, in

addition to the computational savings achieved by eliminating variables. The

revised formulation, with dual variables shown in braces, is program LP:

maximizeg0

subject to go -g(j,1) 0 ;j E0  {q(j,1)J

N
g(j,t) - Yp(i, t)A(i,j,t) -g(,t++ 1) 0 ;j EC,1! t<T,kCE(j,t) {v(j,k,t+1)}

i-I

N
g(j,T) - • p(i,T)A(i, j,T) • 0 ; j E C {q(j,T)}

i,,1

Sp(i,1)- 1 ; h
iESO

k k+1
Sp(i,t + 1) - 7p(i,t) •0 ;1 •k < N,1•< t < T {1(k,t)}

i=1 i=1

N, N
Sp(i,t +1) •p(i,t) •0 ;1 <k < N,1:5 t < T (i(k,t)

i-k+1 i-k
N

~i, t)" -1;1,<t •T h}
i,,!

It has been established so far that the value, v, of the CSEG is at least go.

The possibility still remains that v > go. To establish v -. go, the dual of LP will

be shown to be a Linear Program whose objective function is an upper bound

on the game value. Consideration. of the dual will also provide

interpretations of the dual variables in LP;'the notation used above anticipates

that q(j,1) can be interpreted as the probability described earlier, for example,

but that fact has yet to be established formally.

The dual of LP involves. the sums ---- il(kt) L(it) and

1 r(k,t) a. R(i,t). For compactness we will write L(.,.) and'R(.,.) below,k..

even though 'he sums are actually meant, and we vill also use the conivention

6



that L(O,t) w L(l,t) and R(N+1,t) *R(N,t). Note that, since l(*,*) and r(-,e) are

nonneg~ative.. L(o,t) and R'9,0) are nonth :ree'sing and nondecreasing cell

functions, respectively, for 1 :5 t < T. Finally, the set E*(zit) consists of those

cells from which the evader 4 t time t-1 can transition to cell i at time t. The

dual of L P is DLP:

T
minimize E h

N
subject tc h, - A (i,-, 1) v(j,k,2) -L(i -1,1) - R(i + 1,1) 2t0

j.1 keEE jl)

;i ES0  {gi, 1) 1
N

k - A(i,j,t) Xv(j,k,i+1).s L(it - 1) + R(ijt -1) -*L(z- 1,t) -R(i+1-,t) Ž0
j-1 kEE(j,t)

;iEC,1(<t<T {p(ijt)}

N
- EA(i,j,T)q(j,T) +L(i,T.-1) +R(i,T. 1) Ž0 ;i cc 19~i, T)}

E v(i, j,t + 1) - v t(kji,t) -0 ;i eC,l < t < T {g(i,t)}
jEE(i,t) kEE(i,t)

q~k, T) - v(j,k, 7) -0 ;k eC {g(kT)}
fiEE-(k 7T)

-vjk,2) - q(j,i) - 0 ;jecC{j,}
k EJI),

* q(i1)- I; (go I
IEO

v~i~~t)Ž0;I(i't)?Ž0; T(i,t)2:0; q(i,1)?Ž0; q(j,T) Ž0

07



The last four sets of constrain.s in DtP have the effect of requiring that

q(e.) be a feasible marginal distribution for the evader, with v(.,.,.) being

the joint occupancy probabilities. The fifst three sets of constraints can be
N

simplified somewhat by defining y(i, t) = XjlA(ijt) rk_(.,t)v(],k, t + 1), so

that y(i,t) is the average payoff to the searcher at time t if he occupies cell i at

that time, and also L(-,T) = R(.,T) = 0. In that case the 'first three sets of

constrainfs can be summarized as

h1 - y(i,l) L(i -1.1) - R(i + 1,1) Ž0 ; i ES0  (2)

ht - y(i,t) + L(i,t + 1) + R(i,t.- 1) - L(i - 1,t) - R(i + 1,t) >_ 0 ;i E'C,1 < t • T (3)

The question now is, "Do (2) and (3) guarantee that the accumulated payoff is
T

at inost 1.h for any feasible searcher path?."' Theorem 2 answers this

question in the affirmative.

Theorem 2: Suppose that (2) and (3) hold, with L(.,t) and R(.,t) being

nonincreasing and nondecreasing functions, respectively, on (1, ...,N}, and

L(*,T) = R(.,T) = 0. Let x1, ... , XT be any sequence of integers such that x, ESO,.
lxt:ý,,N forl Vst'Tand Ix-I1 1fort> 1. Then NN

Proof: Substitute x, for i in' the tth inequality of (2)-(3), and-sum all T

inequalities. The result is

T. T 'T
•,ht. -.E y(xt',t) + E. [L(xrt,t 7 ) L(zt.1.- 1,t - I)] +[.R(xt,t -1)- R(x,_, + lt. 2)1 0

t-1 tal t-2
(4)

No.



Since L(.,t-1) is nonincreasing and since xt > xt-i, L(xtt-1) - L(xt-1-1,t-1) < 0 for

t = 2, ..., T. Similarly R(xt, t-1) - R(xf_...+!,t-1) < 0. Therefore the third sum in

(4) is nonpositive, and the theorem follows directly.

Theorem 2 implies that the optimized go from LP is the value of the

CSEG, as well as providing probabilistic interpretations for th-e dual variables

q(i, 1), v(j,k,t+l), and q(i,T). Thus the value of the game and both optnmal

strategies can be obtained from LP.

Bothwell (1990) reports on some experiments in using LP as above (as well

as other methods) to solve a one-dimensional CSEG wnere A(ij, t) indicates

whether i = j, so that the payoff is "total number of coincidences," with So = I1l

and E0 = {Ni. He discovered that the new formulation permitted solutions in

about one fourth of the time of the Eagle-Washburn method, and was ihus

able to solve games up to N = 30. His Figures 1-6 describe the solution for

N = 20 and T = 31. The searcher's strategy p(.,*) is shown digitally in Figure 1

and graphically'in Figure 2. Figure 3 is a blowup for t > 21, showing that

p(@,31) is finally uniform, that p(1,t) goes through a maximum, and that p(20,t)

goes through a minimum. The latter two features were unanticipated, but

seem to be regular features of the solution for large N. Basically the searcher

"rushes" from cell 1 to cell 20, except that he has a small probability of

reversing his direction after time 10. The cumulative effect of All the small

probabilities is to make p(*,t) u. form for t = 31.

Figures 4-6 show the evader's marginal probabilities q(-,*). Basically the

evader stays in cell 20, except that there is at'all times (even t = 1) a small

probability of making a break for the other side; one is reminded: of Auger's

9



CELLS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 11000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 1000 0 0 0' 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

s5 0 0 0 0 1000 0 0 0 0 0 0 0 0 0 00 0 0 0 0

6 0 0 0 0 0 1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 ý0 0 0 0 0 1000 G 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 1000 0 0 0 a 0 0 0 0 0 0 C 0

9 0 0 0 0 0 0 0 0 1000 0 0 0 0 0 0 0 0 0 0 0

1010 0 0 0 0 0 0 0 0 1000 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 Soo 500 0 0 0 0 0 0 0 0 0

lZ 0 0 0 0 0 0 0 0 ZZ 10 491 477 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 10 22 0 13477477 0 0 0 0 0 0 0

14 0 0 0 0 0 0 10 9 13 13 19 13 470 452 0 0 0 0 0 0

T 15I 0 0 0 0 0 I0 9 13 13 '19 '13 19 22 441 441 0 0 0 0 0

1-16 0 0. 0 0 10 9 13 13 1S 17 19 22 42 10 415 415 0 0 0 0

H 17I 0 0 0 10 5 15 15 15 17 19 ZZ 24 28 33 33 382 382 0 0 0

E 18 0 0 10 5 15 1S 1S 17 19 22Z24 Z8 33 33 4141 1 4234 1 0 0

19 0 10 5 15 15 15 17 19 22 24 28 33 33 41 41 52 52 290 290 0

20 0 15 IS IS 15 17 19 Z2 24 28 33 33 41 41 52 S 84 55 ZZO 220

21 15 IS 15 15 17 19 ZZ Z4 28 33 33 41 41 Z 52 66 73 147 147 141

Z2 19 19 19 19 19 22 24 28 33 33 41 41 SZ S2 66 73 110 110 110 110

23 24 24 24 24. 24 24 28 33 33 41 41 52 St 6" 73 -88 88 88 88 88

4 1 Z8 28 2 28 28 25 33 33 41 41 St SZ 64 ?1 73 73 73 73 73 73

251 34 34 34 34 34 34 34 41 41 SZ 5 S 64 64 64 464 64 64 64 64

26 1 39 39 39 39 39 39 41 41 .S2 • 58 .58 58 S8 58 58 58 58 58 58 1
27 4S 4S5 45 45 48 4S SZ 52,S 8 S8 SZ Z St St S 52 SZ SZ S22

ZS S3 53' S3S 533S$ S 53 $3 s8 658 4 46 4 '6 444,6 46 4444 4

29 S6 56 S6 56 S6 S6 56 S6 56 4S 4S 45 4S 4S 4S 4S 4S 4S 4545 1

'30 so so so so so so so so so s0 so so SO so so so so $0 so 501
$11$0., 050530 $0SO S 05050S 50 SOSO SOSO SO SO S s.50501a

1 $0. s•o so so SO so so sdmeb,~mDDHDo•.i • so so W• so som so so o sososo

Figure 1. Searcher Marginal Probabilities (*O000) for 20-Cell CSEG
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Figure 2. Searcher Strategy
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Figure 3. Searcher Strategy-.Final Time Periods
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CELLS

1 '2 3 4 5 6 7 8 ,9 10 11 12 13 ' 4 15 16 17 18 19 20

1 I 0 0 0 0 0 0 0 0 C 0 0 0 0 0 0. 0 0 0 0. 1000
210 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 36 9641

3 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 336 6 9281

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 336 36 98921

S4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 336 36 36 8561

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 036 36 36 37 819
S7 0 0 0 0 0 0 0 0 0 0 0 0 0 336 36 36 337 7829

8 0 0 0 0 0 0 0 0 0. 0 0 0 36 36 36 36 37 397431

9 0 0 0 0 0 0 0 0 0 0 0 36 36 36 36 33 39 704
10 0 0 0 0 0 0 0 0 0 0 36 36 36 36 37 3 7 39 46639

11 0 0 0 0 (. 0 0 0 0 0 36 36 36 36 37 37 39 39 41 41 66Z3

11 0 0 0 0 0 0 0 0 36 36 36 36 37 37 39 39 41 416 U7

13 0 0 000 0 0 36 36 36 36 37 379 3 414 41 4 4535
14 0 0 0 0 0 0 36 36 36 36 37 37 39 39 41 4141 44 494 85

TIS4 0 0 0 0 0 3636 36 36 37 37 3939 41 41 41 44 44 49 436

1 16 0 0 0 0 36 34 36 36 37 37 39 39 41 41 44 4 49 49 54 382

H +17 0 0 0 36 36 36 36 37 37 39 39 41 41 44 44 49 49 S4 S4 329

9 18 0 0 36 36 36 36 37 37 39 39 41 41 44 44 49 49 54 54 '122 208

19 0 36 .36 36 36 37 37 39 39 41 41 44 44 49 49 54 S4 60, 60 208

ZO 136 36, 36 36 37 37 39 39 41 41 44 44 49 49 54. 54 60 60 104 104

21 148 48 48 37 37 39 39 41 41 44 44 49 49 S4 54, 60 60 69 69 69

22• S4 54 S4 54 39 39 41 41 4 44 49 49 54 54 60 60 53 rSZ St S2

23 1 S9 59 59 S9 59 41 41 44 44 49 49 54 54 60 60 4Z 4Z 4Z 42 4t I

24• 63 3 6 63 63 63 63 44 44 49 49 54 S4 60 60 3S 3S 335 35S 3S

2S 166 66 66 66 66 66 66 49 49 S4 S4 3 4137 37 3 T 37 $7' 37. 3?1

U 778 87 8 78 78 49 49 39 39 36 36 36 3U 34 U6 36 3634 51

217 6868 68 686 68 68 45 45 39 39 40 40 40 .40 40 40 4 40 40'

.Z8 1' S, 59 SO SO SO SO SSO 45 4S 44 44 44, 44 44 44. .44, 44 4444
Z9 SS 33 53 13 3 $.1 S3 53 53 S3 44 44 4648 44 44 44 46 44 44 486
so I4? 47 47 4? 4? 47 04 47 4? 53 S5 53 53 3SS 53 53 3S 53 I

It I so so so so so so SO SO so so so SO so s O'o so so s5 SO so s

Figure 4. Evader Marginal Probabilities (xlO00Q) for 20-Cell CSE(
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Figure 5. Evader Strategy

Figu re 6. Evader Strdegy-.Final Time Periods



"(1991) "Wait-and-run" strategies. By time 31 the evader's position, like the

searcher's, is uniform over all 20 cells. It follows (see Eagle and Washburn)

that the game where T > 31 starts the same way as when T = 31, but that it is

optimal for each player to remain stationary for 31 • t 5 T.

3. GENERALIZED PAYOFF

In this section it will be shown that the payoff in a CSEG can be

generalized to '"t.A(xt.i,xt,yt.i,yt,t), with x0 and y0 specified. Solution of

such games will require retention of the joint occupancy probabilities, so the

contribution of this section is toward modeling flexibility, rather than

computational efficiency.

Let So = {xol, Eo = {yo0, and let S(*,*) and E(o,.) be as defined in Section 1

except that S(xo,0) and E(ya,0) are now (rather than So and E0) the sets of cells

feasible for searcher and evader at Time 1. So and En are now the (singleton)

sets, of cells feisible at time 0. For t > 1 let St be the set of cells feasible for the

searcher at time t.' Formally, St = {j: there exists iin St-. such that j is in

S(i, t-1)). Define Et similarly. Also, for t >_ 1 and j C St, let S*(j, t) be the set of

cells from which j is feasible, formally S*(j, t) = {i:j e S (i, t-1)1, and define

"E*(o,.) similarly. Finally, let u(.,*,*) be as defined as in Section 1, so that

f(m, n,t) 0 .A(i,j, mn, t)u(i,j,t); 1 t T (5)
lESt. 1

j(S$spt,1)

is the penalty at timne. t to the evader if he occupies cell m at time t-1 and cell n

at time t, and 1tf(yt.i,y,,t) is the total expected penalty, conditioned on

the evader's truck.

.:1



Consider first the evader's problem of minimizing the total penalty when

u(e,.,.) is known. A dynamic programming recursion is still feasible. Let

"h(m,t) be the minimum total penalty over periods t, ... , T if the evader

"occupies cell m at time tý-1. Then h (m,t) satisfies the recursion

h(m,t) - min {f(m,n,t) + h(n,t + 1)}; 1• t • T,m E Et1 (6)
n•E(m/.1)

with h(*,T+l) * 0. The minimized total penalty over all Tperiods is then

h(yo,1), which quantity the searcher wants to maximize. Since (6) can be

written as linear constraints, maximizing h(yo,1) is a lincar program. The

program, with dual variables named in braces as usual, is LP1:

max imizeh(yO,1)

subject to

-f(m,n,t) h(n,t+1) + h(m,t) 0 ;1 t T,m Et.1,n cE(m,t .1) {v(m,n,t)}

Y u(xoj,1) -I , {g(x0 ,1)}
jES1

Yu(j,i,t)+ J u(i,k,t+ 1)o ;1 < St(Ti eSi {g(i,t + l)}
jES-(it) kES(i2)

u(i,-'t) Z 03e. ;i •t •T,i ESt. 1 ,j ES(i,t *1).

"1 f(m, n, t) has been written for compactness, even though the expression

on -,.-.it-hand side of (5) is meant, and it should be understood that the

term h(n, t+1) is missing when t = T. The second and third sets of constraints

are the feasibility constraints of Eagle and Washburn; as long as u(.,.,.)

satisfies those constraints, there exists a feasible mixed strategy for the searcher

with u(.,.,.) as the joint occupancy probabilities. Thus any feasible solution
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to LP1 corresponds to a lower bound h (yo,l) on the value of the, CSEG, and

consequently the same thing can be said of the maximized value.

/ LP1 and its dual DLP1 possess a pleasing symmetry that was absent in

Section 2. DLP1 is (the g(j,t+l) term is missing when t = T)

minimizeg(xo,i)

subject to

* A(i, ,m,n,t)v(m,n,t) . g(j,t + 1) + g(i,t) 0
m EEt. 1

*ncE(mt. 1)

; ;5t :TJiE St.1,J ES(ijt - 1) {u(i,j t)}

Sv(yon,1) - 1 {h(yo,1)}
n EE1

" Y Xv(n,m,t)+ Xztm,k,t+i) -O ;i t <T,m cEt {h(m,tW+)}
nCEE(mJt) k EE (mt)

/

v~~~)> 1 t T, m EFt .1, n E E (m, t .1).

Any function v(.,.,.) that meets the second and third sets of constraints of

DLP1 can be interpreted as the joint. occupancy probabilities of a feasible

mixed strategy for the evader. That being the case, the first set of constraints

assures that a st archer in cell i at time t-I cannot obtain a payoff larger than

g(it) over periods t, ... , T. In particular, g(xo01) is an upper bound on the

cumulative payoff over all T periods. But the optimized values of g(xo,1) and

h(yo,i) must be equal because LP1 and DLPI are duals, so either number is the

value of the CSEG. Furthermore the evader's optimal occupancy
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probabilities can be obtained as the dual variables associated with the first set

of constraints in LP1; it is actually not necessary, to solve DLP1.

Example: The revised one-dimensional CSEG

In the standard one-dimensional CSEG described earlier, it is possible

that the two tracks x1, ... , xT and yl, .... YT may cross each other without ever

being exactly coincident, in which case the searcher's score will be 0 because

the objective function simply counts coincidences. To guard' against this

possibility, the searcher's leading edge as he moves from 1 to N i's spread into

two approximately equal parts, thus making a barrier so wide that the evader

cannot "jump over it" (see Figure 2). This annoying artifact can be eliminated

by redefining the payoff so that the searcher scores a point whenever the two

tracks cross, even if they are _.ever exactly coincident. Specifically, for

1 5 i,j< N let

1 ifjimn

A(i,j,m,n,t) - if i - n andj m (7)
otherwise 0

Figure 7 shows a GAMS program (Brooke, Kendrick, and Meeraus, 1988) to

solve a 10 cell CSEG with payoff (7) where the initial moves of searcher and

evader are from cells 4 to 5 and 7 to 6, respectively. Figure 8 shows- the

associated output. The value of the CSEG is 1.2269 (scaled to 122.69 in Figure

8),'to be compared with .8541 in the* "standard" game where A(i,j,m,n,t)
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Figure 7. One-Dimensional Crossing Came
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*'****60H DIMENSIONAL CROSSING GAME'*'%Q 01/21:/91 164:2104 PAGE
1!X ECU T I N4 0' GAM 2.19 IBM5 CMS

43 VARABALE M.L

T1 T2 TI T4 TS T6 T7 To T9 Tic

C1 16.1479 16.4247 12.0:87 1.2674
C2 11.6177 12.1472 1-4.247 1.1.7618 6P
CS 

19.0276 19.4009 19."176 1.4.5247 1.1.7412 5.71,$:C4 .10.8290 23.31 . ' 2 1.7134 19.0876 17.7142 13.7612 S.7.8
CS 22.W94 23.223337 24.4131 21.7104 21.7134 to.a1'e 16.25,1 $-?is$
C6 2.94 4S1 25.7, 3 2.15 25.7410 25.1741s 21.747* 11.1:07 7.4542
C? 122.6904 122.6904 11.0709 .19.7394 Z8.7408 31.2371 27.4i:1 1032 ."621

ca1:2.490'6 33.73338 38.7:60 34.8544 37.9.05 '133 7.6177
C9, 12.4:.904 '64:163 S1.118:1 Z7.9601, -1.0639 1341:1.2
CIO0 1:2.6904 is.1959t 58.9366 I1.2353 !X.21=2

- SI PARAM5ETER P MARGINAL$

T1 72 TS T4 TS TO 7 To T9 T26

C1 8.4699 6.:3 .3640 '.7711 7.:676
C2 0.4499 1.25S31 i_1s .. : .72: 7. evil
C 1 1.8014 2.21s:1 :.6.49 2.66:? 3.9'4 4.99.10 S.7%33
C4 1.801A 1.2111 2.6i.19 2.64.19 3.ý994 4.9934 7.48-S 2.7488
Cs 100.*00CC 1.0014 1.:531 1.3311s :. 6629 0.9954 4.910.0 7.esiS 9.1619 3.7380
CA 93. t s8 .3219 2.ss:*9 S.qf4 ~ 4.99.10 7.489S 9.1619 12.8967 7.5462
C? 91.6196 3. "14 4.9930 ?.to"5 9.:619 17.4177 12.8647 7.54442
Cs8694 7.4391 9.361f 17.6177 U2."67 7.446 17.6177
C9 76.4741 17.6077 31.2!11 U2.8967 11.9%06 13.21.32
CIO 59.49496 14 .2191 Z1 1.0 11 0:2.3 1 1.13

51 PAXAnTEXE 0 t'VACCR MARGINALS

TI Ul r:4 'S T& T7 To T9 T10

C1 9.00%4 14.3101 lan07 20.31071 M3.1071
c:9.co334 1.2649 v9.083 1.1.71:1 :0_3073 003

CS 9.0014 ?.2469 9.39.16 #.Soso t.6ti2 121.3017 20.3073
C4 9.0314 7.2660 9.0833 $.S3fa 9.41121 V..1291 9.3924 0.332.9

?1933 .Z669 9.0334 $.SOSO 9A1122 .0S 9.3924 10.7149 64.029
.6 100.0000 ?.2669 9.0033 6.1050 9.6112 9.1*91 9.3994 10.7149 1.3421 6 V1.379
C7 OS60.449 3.945 9.411.1 9.2_191 9.6924 12.7149 10.0864 1.0423 1 ..14:
314.90 9.2939 9.3126 10.7149 13.3544 1.0423j 4.3029 1.05213
Co 47.079? t0.7149' 11. 84"4 5.:9 102 .04213 1.0423

II PARAMETER W ROUTE TOTAL$ 3V I.E&Y PURSUCS

ClIs sr 90. 62 7.272 to.23 44. 91 ?I*0

12-,90 4.3140 1.271. 49.9=50 40.614? 29,.'071
Ci ...2.94 9S.ý 97 4.5394 73.00 14.312". 60.6414 22.3071
04 62~94 1413 104 909 2.9111 10.2299 02.&13 *O.;G70

01 1240 2.38 99.0711 3 1.7:2 72.4999 59.011V 41.9321 06.199,9 4.30239
04. & ~S@ M.'.1 40.1144? 40.4482 11.1901 40.8924 17.3176 6..3029

9l03.6106 79.0694 40.4406 49.9311 27.7123 11.1412 6.02
co 49.7760 WWI77 :1.4411 ZI.4Z'S 11.043? .0.421
c9 49.14:6 15.2902 06.3611s 11.3492 5.0423
CIO 22.6994 16.3031 20.944 1.8423

Figure 8. One-Dimensional Crossing Game
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simply indicates whether j = n. The prohibition of scoreless crossovers iý,

evidently a significant change in the rules of the game. Note that the leading

edge of the searcher's marginals (P) is now only 1 cell wide for 1 < t 5 6.

The revised game differs qualitatively in an interesting way from the

standard game. Let vN(T) and vN(T) be the values of the standard and revised

games (so vlo(lO) = .8541 and v°10 (10) = 1.2269). oN(T) is ultimately linear in T

with slope 1/N. For example v10(T) = 1.2269 + (T-10)/10 for T > 10. The

turnpike theorem of Eagle and Washburn makes this plausible; essentially

either side can guarantee a slope of 1/N by remaining stationary in a

randomly chosen cel t . Stationarity has the same virtues in the revised game,

biut there is no evidence that vPN(T) is ultimately linear. For

T = (12, 14, 16, 18, 20), v;o(T) is (1.4486, 1.7109, 2.000, 2.1396, 2.3540). The

differences fluctuate about .2, but are never exactly equal to .2. It is possible,

of course, that T = 20 is simply not large enough to observe the onset of

linearity.
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